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Abstract. In this work we study several definitions of free and bound states in plasmas and the con-
sequences of Onsager’s bookkeeping rule for the thermodynamic functions. In particular we investigate
Onsager’s rule of balance between the contributions of free and bound charges. We show that this rule
guarantees at low densities the independence (stationarity) with respect to the fine details of the defini-
tion of bound states (chemical species). The Brillouin-Planck-Larkin atomic partition function which is
the most natural choice is modified and the consequences of such changes are investigated. We study the
free energy landscape in dependence on different choices of the mass action constant and formulate the
condition of stationarity with respect to free parameters. We show that at high densities the condition
of stationarity is violated (except in certain saddle points) so that in general the chemical description of
plasmas can be applied only with great care.

PACS. 52.25.Kn Thermodynamics of plasmas – 52.27.Gr Strongly-coupled plasmas – 52.25.Jm Ionization
of plasmas

1 Introduction

The theory of ionisation processes in weakly ionised plas-
mas is based on Saha’s equation which was formulated by
Saha 1920-1921 during a stay at the Berlin University [1].
In Saha’s theory the ionisation is treated as a chemical
equilibrium between free electrons and ions on one hand
and bound electron-ion pairs on the other hand. Nearly
at the same time Bjerrum formulated in Denmark a the-
ory of weak electrolytes which in fact is based on sim-
ilar principles [2–4]. Modern versions of the mass action
law of weakly ionised electrolytes were developed in recent
work [5].

In the plasma theory as well as in the electrolyte
theory the fundamental question arises which states are
to be treated as “free” and which states are “bound”.
Bjerrum assumed that ion pairs with electrostatic energy
larger than 2kBT corresponding to distances r < q0 =
e2/2D0kBT may be treated as new chemical entities called
ion pairs (e — ionic charge, D0 — dielectric constant,
T — temperature). For plasmas this question was even
more complicated and several proposals going back to
Bohr, Herzfeld, Planck and others were available [6–12].

Onsager’s book-keeping rule was formulated first at
a conference on electrochemistry in Montpellier [13,14].
This rather general rule says, that in the chemical picture
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bound and free state contributions correspond to different
pages of a ledger. With proper bookkeeping the result of
calculations is not influenced by the distribution on dif-
ferent pages. In other words, in a correct theory the finer
details of the definition of an ion pair/a bound state do
not matter [13]. We will show here that the key point of
Onsager’s bookkeeping rule is the stationarity (neutrality)
of the thermodynamic properties with respect to finer de-
tails. Here we will consider several definitions of bound
states in plasma theory and will generalize them in such
a way that the bookkeeping rule is exactly fulfilled.

Furthermore we will analyze the problem of choosing
“optimal” mass action constants. There are two criteria
which will be discussed.

– Simplicity: as was shown already some time ago there
are concrete choices for the mass action constant which
guarantee maximal simplicity of the thermodynamic
functions [11,17].

– Stationarity: another natural criterion for a “good”
choice is to require that for the given choice the free en-
ergy is stationary (insensitive) with respect to changes.

Stationarity means here that the results are not sensi-
tive with respect to small changes of free parameters in the
mass action constant. In other words the results are not
sensitive with respect to the details of the definition of the
chemical species. This means that the free energy should
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correspond to extrema or saddle points with respect to
the free parameters.

Here we we will modify several proposals for the mass
action constant in such a way that Onsager’s bookkeeping
rule is exactly fulfilled. This way we continue an earlier
work in the field of ionic solution theory [15].

2 Different mass action constants
and the bookkeeping rule

In quantum mechanics the term “bound state of pairs”
is usually associated with discrete states of particle pairs
with attractive interactions. For Coulomb systems this
leads to difficulties due to the infinite number of discrete
states of the 1/r-potential. Therefore a maximal main
quantum number sm was introduced. States with s < sm

are considered as bound. This leads for hydrogen-like sys-
tems to a finite partition function (I-ionisation energy)

σm(T ) =
sm∑
s=1

s2 exp
(

I

kTs2

)
(1)

and to the mass action constant

Km(T ) = Λ3σm(T ); Λ =
(

h2

2πmiekT

)1/2

(2)

where mie is the reduced mass. The choice of the maximal
quantum number sm is still free. There are several propos-
als. For example Riewe and Rompe argue [10] that states
with binding energies |Es| < kT should be considered as
quasi-free due to their limited stability. This leads to

sm '
[
I

kT

]
· (3)

We mention that the terms under the sum in equation (1)
have a minimum just at the quantum number defined by
equation (3). In other words the cutting defined by equa-
tion (3) corresponds to the standard procedure for asymp-
totic series. According to Brillouin and Planck a soft cut-
ting is more appropriate [9,16]

K(T ) = Λ3
∞∑
s=1

wss
2 exp

(
I

kTs2

)
(4)

where the weight function is defined by

ws = 1−
(

1 +
I

kTs2

)
exp

(
− I

kTs2

)
· (5)

In the decades after Planck and Brillouin several alterna-
tive possibilities were discussed [11,12].

Much later the so-called Brillouin-Planck-Larkin par-
tition function could be derived by exact quantum-
statistical methods [11,16,17]. In order to introduce this
into the Saha equation the heuristic argument of maximal
simplicity of the thermodynamic functions was exploited.

After all these findings the question arises: What is the
best choice and what is here the meaning of any valuation?
Evidently the choice of the mass action constant is not
unique. There was a long discussion about the different
possible choices up to a clarifying discussion remark given
by Onsager at a conference in Montpellier [3,13,14]: “The
distinction between free ions and associated pairs depends
on an arbitrary convention. Bjerrum’s choice is good, but
we could vary it within reason. In a complete theory this
would not matter; what we remove from one page of the
ledger would be entered elsewhere with the same effect.”

The really deep content of this phrase is not easy to
understand and we will rephrase it several times and fi-
nally give it the form of a recipe which is easier to handle
than the general rule contained in Onsager’s phrase. What
did Onsager mean with this metaphor? Evidently Onsager
wanted to tell us that the correct formulation of the mass
action law requires a careful bookkeeping of the free and
bound state contributions.

3 Density expansions and bookkeeping

We start our analysis with the statistical thermodynamics
of a hydrogen-like plasma consisting of electrons (denoted
by index 1) and ions (denoted by index 2) at very small
densities n1 = n2 = n. Then free energy density and os-
motic pressure are given by [11,12,17]

f = fid − kBT

(
κ3

12π
+ n28πΛ3k0(T ) + ...

)
(6)

p = 2nkBT − kBT

(
κ3

24π
+ n24πΛ3k0(T ) + ...

)
. (7)

Here Λ is the thermal de Broglie wavelength defined by
equation (2) and κ is the reciprocal Debye length

κ2 =
8πne2

kBT
· (8)

Further k0(T ) is the so-called mean virial function for
hydrogen-like plasmas:

k0(T ) =
1

4Λ3

(
λ3

11K0(ξ11) + 2λ3
12K0(ξ12) + λ3

22K0(ξ22)
)
(9)

where the interaction parameters for a pair ij is given by

ξij = −eiej(2mij)1/2

~(kT )1/2
· (10)

The virial functions themselves are given by

K0(ξ) = Q(ξ)− 1
2

(1−Θ(ξ))E(ξ) (11)

with the Heisenberg contribution

Q(ξ) =
∞∑
m=1

qmξ
m (12)
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and the Pauli term E(ξ) which contributes only for pairs
of equal particles

E(ξ) =
∞∑
m=0

emξ
m. (13)

The coefficients of these convergent series are explicitly
known [11,17]. Here we do not need the explicit form but
only the asymptotic representation for

ξ = ξ12 � 1. (14)

According to

ξ2 =
4I
kT

(15)

we see that this corresponds to temperatures below 105 K.
The asymptotic representation is remarkably simple

and reads

k0(T ) = − 1
64π

ξ2 +
1

8π
σBPL(T ) (16)

with the Brillouin-Planck-Larkin partition function

σBPL(T ) =
sm∑
s=1

s2

(
exp

[
I

kTs2

]
− 1− I

kTs2

)
· (17)

Now we consider the process of the formation of hydrogen-
like atoms at finite concentrations and formulate Saha’s
mass action law in connection with the Debye-Hückel law
for the thermodynamic functions. Let α be the degree of
ionisation. Then we have first the mass action law

1− α
α2

= nK(T ). (18)

The mass action constant is not yet specified, one may
so far think about any of the expressions given above.
Secondly we have to make a choice for the thermodynamic
expressions. In a first approach we will make a Debye-
Hückel ansatz for the pressure

p

kBT
= n(1 + α)− κ3α3/2

24π
Φ(a(T )κα1/2) + ... (19)

Here the Debye-Hückel function is

Φ(x) =
3
x3

(
1 + x− 1

1 + x
− 2 ln(1 + x)

)
= 1− 3

2
x+ ...

(20)

Here the Debye-Hückel diameter a(T ) is still free and we
have a problem to derive this quantity in a consistent way
from the quantum-statistical formulae given above.

In order to solve this task we formulate Onsager’s
book-keeping rule explicitly. Going within the chemical
picture to the limit of very small densities we find

α = 1− nK(T ) + ... (21)

Comparing now equations (7) and (19) we get

n28πΛ3k0(b) = − 1
16π

κ4a(T ) +K(T )n2. (22)

This leads to

K(T ) = Λ3σBPL(T ) + 4πl2 (a(T )− a0(T )) (23)

with the Bjerrum-Landau length l = e2/kT and a new
effective Debye-Hückel length a0 which is defined by

a0(T ) =
Λ

8
· (24)

The formula (23) is the explicit form of Onsager’s book-
keeping rule: wee see that it assumes the form of a rela-
tion between the two free functions K(T ) and a(T ) in the
chemical picture. Both are related to the BPL-mass action
constant. There is one concrete choice of the Debye-Hückel
diameter namely

a(T ) = a0(T ) (25)

where two terms on the r.h.s. cancel and we get the most
simple expression for the mass action constant namely

K(T ) = Λ3σBPL(T ). (26)

For any other choice of the mass action constant, the dif-
ference between the used effective diameter a(T ) and the
expression a0(T ) should be introduced. For example if we
prefer to cut at a given maximal main quantum number
sm according the mass action constant Km(T ) defined by
equations (1, 2) then the effective diameter to be used in
Debye-Hückel should have the value

am(T ) = a0(T ) +
1

4πl2
[
Km(T )− Λ3σBPL(T )

]
. (27)

In other words, any other choice would violate Onsager’s
bookkeeping rule and in this way lead to inconsistency to
exact quantum-statistical results.

There is still one complication which we have to men-
tion: our calculations are so far based on the asymptotic
representation (16) and not on the exact quantum-statis-
tical expression (9). This however leads only to very small
corrections at high temperatures T > 105 K. In the gen-
eral case we find

a0(T ) =
Λ

8
+ δa0 (28)

δa0 =
Λ3

8π
√
πl2

[
Q(−ξ)−

√
2K0(− ξ√

2
)
]

− l

12

[
ln(3
√

2ξ) + 2C − 11
6

]
·

The relative corrections to the first term are rather small
and do not exceed 1% at 105 K. At high temperatures
above T ' 106 K the deviations exceed 50% i.e. then
the full expression for a0(T ) must be used. At such high
temperatures however we have always full ionisation and
there is no need to study the Saha equation.
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Let us summarize the two most interesting consistent
choices of a(T ) and K(T ) which we have discussed so far:

– the Brillouin-Planck-Larkin mass action constant

K(T ) = λ3σBPL(T ) (29)

in combination with a modified Debye Hückel diameter

aBPL(T ) = a0(T ) ' Λ

8
; (30)

– the traditional mass action constant based on a parti-
tion cut at the main quantum number s = smax in com-
bination with the modified effective diameter am(T )
according to equation (28).

4 Statistical thermodynamics at finite
densities

We formulate now approximate expressions for the free
energy density in the chemical picture with a consistent
choice of a(T ) and σ(T ). We denote the density of bound
hydrogen atoms by n∗0 and the density of free electrons or
ions by n∗. Then in the Debye-Hückel type approximation
the free energy density is given by:

βf =n∗0

[
ln
(
n∗0Λ

3
0

σ(T )

)
− 1
]

+ n∗
[
ln
(
(n∗)2Λ3

1Λ
3
2

)
− 2
]

− (κ∗)3

12π
τ (κ∗a(T )) (31)

where

κ∗ =
(

8πn× e2

kT

)1/2

(32)

denotes the inverse Debye radius of the free charges and
the Debye-Hückel function is defined by [3,11]

τ(x) =
3
x3

[
ln(1 + x)− x+

x2

2

]
· (33)

The corresponding formula for the pressure is

p

kBT
= 2n∗ + n∗0 −

(κ∗)3

24π
α3/2Φ(κ∗a(T )) + ... (34)

Here the Debye Hückel function Φ is defined as above.
The equilibrium composition is given by the non-ideal

mass action law equation

n∗0
(n∗)2

= Λ3σ(T ) exp
(
− lκ∗

(1 + κ∗a(T ))

)
(35)

where l = βe2/ε is the Bjerrum-Landau length.
The total number density of (positive/negative)

charges is n = n∗0 + n∗ and the degree of ionisation is
given by α = n∗/n.

The general consistency relation between σ(T ) and
a(T ) reads

Λ3σ(T ) = Λ3σBPL(T ) + 4πl2 (a(T )− a0(T )) . (36)

With the definition y = a(T )/a0(T ) we may bring this
balance relation into a more convenient form

σ(T ) = σBPL(T ) +
1
8
ξ2 (y − 1) . (37)

This way we see, that in fact the parameter y is a free
parameter in the definition of the partition function. The
full partition function is linearly dependent on y − 1. In
other words, y − 1 is a measure of the deviations of the
used partition function from the BPL-partition function:

(y − 1) = 8ξ−2 (σ(T )− σBPL(T )) . (38)

So far we have assumed that the electrons, the ions and
the atoms may be considered as ideal Boltzmann parti-
cles. Improving the model we will assume now that the
electrons follow the Fermi statistics and that the atoms
are spheres with radius RH.

Introducing the degree of ionisation as the relation be-
tween number of free electrons and the total number of
electrons

x =
n∗

n
(39)

we find for the dimensionless free energy density in units
of kBT as a function of the variables x and y the explicit
form

ϕ(x, y) =xke(xν) + x [log x+ log ν − 1]
+ (1− x) [log(1− x) + log ν − 1

− log
(
8πσ + 64ξ2(y − 1)

)]
− 2

3
(8lx/Λ)3/2(8πν)1/2τ

×
(
y(64πlνx/Λ)1/2

)
+ ϕvw. (40)

Here ke denotes the standard Fermi function expressing
the ideal electronic contribution to the free energy and
ν = nΛ3/2 is the degree of degeneracy of the electrons.
Furthermore we used the abbreviation ϕvw for the contri-
bution of the short range van der Waals forces. We still
have to specify this contribution due to the volume occu-
pied by the atoms. As a first approximation we will assume
here that the atoms are hard spheres with radius 0.82 Å
and that electrons and ions have zero diameter; other val-
ues will not change the picture qualitatively. For our case
we get

ϕvw(x, y; ν) =
16πR3

3Λ3
ν
(
x2 − 3x+ 2

)
. (41)

We see that from the point of view of the van der Waals
repulsive interactions, full ionisation x = 1 is the most
favourable state with respect to the free energy.
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Fig. 1. Cross-section of the free energy landscape ϕ(x, y) at
y = 1 for T = 50 000 K from ν = 10−4 to ν = 10−1. The
minimum of the free energy with respect to x corresponds to
the degree of ionisation. Increasing the density changes the
degree of ionisation from medium to small values. The ionisa-
tion increases again at high densities as demonstrated here for
ν = 10−1.
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Fig. 2. Cross-section of the free energy landscape for ν = 10−4

from T = 20 000 K to T = 110 000 K. The minimum of the
free energy with respect to x corresponds to the degree of
ionisation. Increasing the temperature increases the degree
of ionisation.

5 The free energy landscape and stationary
partition functions

In the formulae given in the previous section, the choice
of K(T ) and a(T ) (or correspondingly σ(T ) and y in the
dimensionless writing) is still free within limits, as far as
Onsager’s bookkeeping rule is observed. The latter is ex-
pressed in equations (23, 37).

The standard choice is a(T ) = a0(T ) which corre-
sponds to y = 1 [11,17]. Fixing a(T ) = a0(T ) i.e. y = 1
the only free parameter in the free energy is the degree of
ionisation. The minimum of the free energy with respect
to variations of n∗

∂(βf)
∂n∗

= 0 (42)

or in dimensionless units with respect to x corresponds to
the degree of ionisation

α = xmin. (43)

For the choice y = 1 the minimum with respect to x is
illustrated in Figures 1 and 2 for different values of the
temperature and several densities. We may consider ν =
nΛ3/2 as a measure of the dimensionless density.
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lg n
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1
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T 1000K( )
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Fig. 3. Dependence of the degree of ionisation α = xmin cor-
responding to the minimum of the free energy as a function
of the dimensionless density. We see the valley of ionisation
at medium densities which becomes flatter at higher temper-
atures. At very high densities ν > 1 (in dimensionless units)
the Fermi pressure of the electrons destroys the atoms and we
observe full ionisation.

Figure 1 shows a cross-section of the free energy land-
scape ϕ(x, y) with coordinate x as degree of ionisation
and a fixed atomic radius y = 1 for a temperature of
T = 50 000 K and several densities from ν = 10−4 to
ν = 10−1. By increasing the density from low values, i.e.
ν = 10−4, to medium values, i.e. ν = 10−2, the minimum
of the function ϕ(x, y = 1) with respect to x, which in
our model corresponds to the actual value of the degree of
ionisation α = xmin, wanders from medium to low values
of ionisation. That behaviour of the degree of ionisation is
in agreement to studied real systems. For very high densi-
ties, i.e. ν = 10−1 and higher, the volume exclusion effect
dominates and the large atoms become energetically un-
favourable, which explains the jump of the minimum of ϕ
from low to high values of x.

Figure 2 shows a cross-section of the free energy land-
scape ϕ(x, y) with variable degree of ionisation x and a
fixed effective radius y = 1 for a density of ν = 10−2

and different temperatures from T = 20 000 K up to
T = 110 000 K. One can see the motion of the minimum
of the free energy with respect to the ionisation degree
to higher values when temperature is increasing. So the
actual degree of ionisation α = xmin increases with in-
creasing temperature.

Figure 3 gives a compact overview over the behaviour
of the model for a fixed effective radius y = 1 with re-
gard to the external parameters temperature and density.
It shows the positions of the minima of the free energy
ϕ(x, y = 1) for a fixed effective radius y = 1 with re-
spect to the degree of ionisation x subject to the density
ν in a range from ν = 10−6 to ν = 10 for different tem-
peratures. Thus the picture shows the dependency of the
actual degree of ionisation α on the density for certain
temperatures. The higher the temperature, the higher the
ionisation is in general. For low densities the degree of ion-
isation is on a relatively high level, whereas for medium
densities it drops down to quite small values, the so-called
valley of ionisation, and rises rapidly to values close to
unity for higher densities, where the volume exclusion
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Fig. 4. Contour plot of the free energy ϕ(x, y) for a small
density ν = 10−4 and the temperature T = 20 000 K. We
observe a very long valley in the y-direction, which shows that
the choice of y actually is of no importance for the ionisation
equilibrium.
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Fig. 5. Contour plot of the free energy ϕ(x, y) for the density
ν = 0.2 and the temperature T = 40 000 K. We see that at
higher density a saddle point is formed which corresponds to
points of stationarity with respect to the choice of y.

effect is the driving force for breaking the atoms to ions
and free electrons.

As seen in Figures 4 and 5 changing the choice of the
mass action constant and correspondingly the effective ra-
dius a(T ) or the parameter y = a(T )/a0(T ) (both are con-
nected by Eq. (37)) changes the location of the minimum
of the free energy with respect to x. In other words the
location of the minimum with respect to x (which gives
the degree of ionisation) depends on the parameter y. By
construction of our consistency condition equation (37)
Onsager’s condition is fulfilled in the limit of very small
concentrations but already at moderate concentrations we

observe some sensitivity with respect to the choice of the
mass action constant and the corresponding y-parameter.
The sensitivity is small only near to the saddle points of
the free energy surface which are the stationary values of
the free energy density with respect to the degree of ion-
isation and with respect to the choice of the mass action
constant. In the points of stationarity the variation with
respect to the density of free ions equation (42) is zero
and at the same time the variation with respect to the
choice of the partition function disappears. This leads to
the equation

∂(βf)
∂σ

= 0. (44)

Instead of varying σ we may also vary y since both quan-
tities are linearly connected by Onsager’s bookkeeping
rule (37).

The variation with respect to n∗ defined by equa-
tion (42) and applied to equation (31) leads back to our
mass action law (35). The variation with respect to σ (44)
leads to stationary values of σ or y respectively. In the
limit of very small concentrations we find under the con-
dition that Onsager’s rule (37) is observed

∂(βf)
∂σ

= O(n3). (45)

This relation guarantees that in the limit of small den-
sities the condition of stationarity (44) is automatically
fulfilled. In other words, due to the bookkeeping rule the
linear variation disappears. Without observing the book-
keeping rule the stationarity is violated even in the limit
of disappearing densities. In other words: bookkeeping at
the level of the second virial coefficient guarantees the sta-
tionarity in the limit of small densities.

At moderate and at high densities the stationarity is
not automatically given and we find some sensitivity with
respect to the concrete choice of the mass action constant
and the corresponding effective ion diameter. In order to
come to a deeper understanding of this sensitivity we have
to investigate systematically the free energy landscape as
a function of the two variational parameters n∗ and σ (or
the corresponding y). It is useful to study the free energy
landscape in the dimensionless form given above. The free
energy per ion in units of kT is denoted by ϕ(x, y; ξ, ν).
Here x, y are the variational parameters and the Born pa-
rameter ξ and dimensionless density ν = 0.5nλ3 serve as
the (given) physical units for temperature and density. We
remind again that the first variable x denotes the relation
of free ion density to the total ion density the second vari-
able denotes the choice of the partition function which is
related to the parameter y = a(T )/a0(T ) by our form of
Onsager’s balance relation (37).

Above we considered in some detail the special case
y = 1 which occurs now as a special cross-section.
This choice corresponds physically as shown above to the
Brillouin-Planck-Larkin expression for the atomic parti-
tion function. At low densities this choice satisfies the con-
dition of stationarity and leads to a maximum of simplicity

σ(T ) = σBPL(T ); y = 1. (46)
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This choice is now more or less standard in plasma physics.
However we should not forget that this is not the only
choice and that we always should check the sensitivity
with respect to the choice of the partition function which
corresponds to the free parameter y in the definition of the
partition function equation (37). This question is directly
connected to the properties of the free energy landscape.

Therefore we will study now the 2-dimensional repre-
sentations of φ which include the y-dependence. Figure 4
shows contour plots of the free energy on the x−y-plane
for small densities ν and for different temperatures. We
see at T = 20 000 K a very long valley in the y-direction.
In this case the free energy is nearly independent of y,
what this means is that the exact choice of y is actually of
no importance. At very high temperatures a strong min-
imum at rather high y values is observed which seems to
be unphysical. Here the chemical picture fails since small
changes of the partition function might have big effects.
From this follows that a high temperatures the use of the
Saha equation leads to intrinsic difficulties. In this tem-
perature region one should better use the physical picture.

However at lower temperatures T < 50 000 K and low
densities the free energy surface is so flat (see Fig. 4), that
it is practically stationary. Here there are no problems
with the formulations of the Saha equation or with the
choice of the mass action constant. The concrete choice
of the mass action constant is practically of no influ-
ence. This of course is due to the fact that we observed
Onsager’s bookkeeping rule which is a guarantee for sta-
tionarity at low densities (see Eq. (44)). At higher den-
sities the situation is much more complicated. Our nu-
merical investigation shows that at high densities and
T > 50 000 K it is difficult to reach stationarity except
for special values of ν. The conclusion might be that it is
not meaningful to use a chemical picture at high densities
and high temperatures. For T < 50 000 K the picture is
simpler. We find points of stationarity which are saddle
points on the free energy surface. Figure 5 shows that for
T = 40 000 K with increasing density a saddle point is
formed which corresponds to points of stationarity with
respect to the choice of y and the corresponding σ. By
using mass action constants in the region of the saddle
points we can guarantee that the thermodynamic func-
tions are not sensitive with respect to the concrete choice.
In regions far from the saddle point the stationarity with
respect to the choice of y or the corresponding mass action
constant is not guaranteed. This means that the use of a
Saha equation may generate artefacts here.

Figures 6 and 7 show the dependence of free energy
saddle point location on the dimensionless density ν for
temperatures T = 20 000 K and T = 40 000 K. In de-
pendence on the dimensionless density ν. In Figure 6 we
represented the found saddle points and their position in
the x−y-plane for a temperature of T = 20 000 K and
densities in a range of lg(ν) = −1.4 to ν = 1. At a density
of approx. lg(ν) = −1.4 a saddle point occurs in the free
energy landscape on the left hand side of the lower edge
of the region, i.e. y = 0, and then moves with increas-
ing density in a curved line to higher values of y and x.
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Fig. 6. Dependence of free energy saddle point location on
the dimensionless density ν for temperature T = 20 000 K.
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Fig. 7. Dependence of free energy saddle point location on
the dimensionless density ν for temperature T = 40 000 K.

For the temperature T = 40 000 K the saddle points in
the free energy landscape occur at a density of approxi-
mately lg(ν) = −1.4 in the middle of the lower edge of
the region and then they move with increasing density
in a curved line. We may use these results as a kind of
recipe: for a given density we find the y-value correspond-
ing to a saddle point. Then using this we find the station-
ary values of the partition function and the mass action
constant (corresponding to the given saddle point) from
equation (37) and K(T ) = Λ3σ(T ). Finally we get the sta-
tionary value of the effective radius a(T ) = a0(T )y. With
these choices the stationarity of the free energy and other
thermodynamic functions are guaranteed. By using any
other choice for the mass action constant we take the risk
that the thermodynamic functions might strongly change
with any variation of the mass action constant. Following
Onsager, this is an unphysical effect, an artefact which
should be avoided. Strictly speaking the chemical picture
of plasmas makes no sense if the condition of stationarity
with respect to the choice of the mass action constant is
violated.

6 Discussion and conclusions

At first several remarks about the character of the ap-
proximations used here seem to be necessary. All results
given in this work are exact up to the second order in the
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density. This is the approximation of the second virial co-
efficient which is the next step beyond the simple Debye
law. The bookkeeping according to Onsager is indeed
heavily based on the available expressions for the virial
functions. The terms beyond the second virial functions
are based on Debye-Hückel-type approximations for the
high-density behavior. Therefore a few remarks about the
Debye-Hückel approximation may be appropriate:

– the old Debye-Hückel cannot be considered as old-
fashioned, it is still a powerful instrument and found
recently interesting applications and developments
(see [5,18,19]);

– the variant of the Debye-Hückel theory used here is
in fact not a classical theory. We use exact quantum-
statistical results up to the second order in the density;

– the Debye-Hückel functions serve only for an approx-
imate guess of the higher orders in the density which
are not known from quantum-statistical calculations.
They provide us with expressions for the higher-order
density dependence which are relatively simple and al-
low analytical calculations.

A consequent extension to higher order terms in the
density may be based on Padé approximations in combina-
tion with numerical results obtained by Quantum Monte-
Carlo and Quantum Molecular Dynamics (see [12,19–21]).
This method allows, in principle, access to different ther-
modynamic properties in wide ranges of density and tem-
perature. A disadvantage is however, that the Pade ap-
proximations are − as a rule − quite complicated, so that
analytical calculations require big efforts. Furthermore in
order to give a proper description of thermodynamic equi-
librium within the Padé approximation in the chemical
picture (PACH) for given temperature and density one
has to minimize the free energy with respect to the abun-
dances of the various free and composite particles. We may
achieve this only numerically by a simulated annealing
procedure [19] that finds the optimal numbers of free and
composite particles within a certain ensemble. We plan to
go this way in future work but here we are more interested
in qualitative and semi-quantitative results which are rela-
tively easily obtained within the Debye-Hückel formalism.

Now let as draw several conclusions: we have shown
that the chemical description of partially ionized plasmas
may be generalized in a systematic way by using the avail-
able information from quantum statistics. An important
role is played here by Onsager’s bookkeeping rule, which
provides us the tools for a correct formulation of the chem-
ical picture. The key idea of Onsager is that in a cor-
rect theory, the details of the distinction between free and
bound states have only a minor influence on the results.
We have shown here that this condition is fulfilled auto-
matically at small densities, if Onsagers book-keeping rule
is observed. At higher densities the situation is quite com-
plicated as we have shown here by an extensive numerical
study of the free energy landscape. Here the only way to
reach independence of the free energy with respect to the
free parameters in the chemical picture is to search for
stationary points on the free energy surface. As we have
demonstrated here (see Figs. 5–7) the stationary points

are in general saddle points. Operating on these saddle
points, i.e. using a corresponding choice of the mass ac-
tion constant, we may expect that the resulting physical
thermodynamic quantities do not depend on the concrete
choice of the mass action constant. For any other choice
the results may depend on the definition of the mass ac-
tion constant. Of course, this cannot be accepted in the
framework of a good theory. Therefore we come to the
conclusion that at high density the chemical picture has
to be treated with much care. The recipe that we propose
here, is to make sure that the results are stationary with
respect to the concrete choice of the mass action constant.
We have demonstrated here that this is indeed possible,
since the free energy surface possesses saddle points which
correspond to stationarity. Summarizing we may say that
the chemical picture which is so successful at low densities
comes to limits of applicability at high densities. Working
with the chemical picture at high densities requires much
care, needing always comparison with existing numerical
data [19,21] and in all cases, we have to make sure that the
results are stationary with respect to the concrete choice of
the constants of chemical equilibrium. Our critical anal-
ysis of the chemical picture for plasmas has shown that
Onsagers condition of insensitivity (stationarity) with re-
spect to the concrete choice of the mass action constant
plays an important role. At low density this stationarity is
automatically fulfilled if the bookkeeping between bound
and free state contributions is observed (Onsager’s book-
keeping rule). At high densities however, bookkeeping is
not sufficient to provide the required insensitivity. We have
to search for the stationary points (saddle points) and this
is, in general, not a trivial task. We repeat again, that the
use of the chemical picture of plasmas, which is so useful
for many applications of practical interest, requires much
care to guarantee that the thermodynamics is physically
meaningful.

We would like to thank H. Krienke, M. Spahn, M. Schlanges,
M. Steinberg and W. Stolzmann for collaboration and discus-
sions and the referees for a very helpful criticism.
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